
cdscan and CDML –
file aggregation



The “cdscan” utility (1)

• CDAT provides a command-line file aggregation utility 
is called cdscan.

• This allows you to describe an entire dataset with just 
one XML file, that is opened by CDAT using the 
standard cdms.open() call.

• The XML format is known as Climate Data Markup
Language (CDML) which is fully described in the 
CDAT manual.

• Using CDML files:
– removes the need to know about filename
– provides a global description of a collection of files
– metadata and aggregation are handled together



CDML structure

• CDML files contain the following sections:
– <dataset>  - general information at the dataset level.
– <axis> - axis dimension information.
– <variable> - relating to individual variables.

• At BADC we use and ECMWF ERA-40 CDML file 
which:
– links to over 3,000,000 files
– is only 21KB in size!



cdscan in action

• cdscan will analyse the archive for:
– variable information
– axis information
– global (universal) metadata 

• Let’s have a look at it in action: 
– 1200 monthly mean NetCDF files to be scanned.
– Scenario 1: Filenames do not map nicely to their contents. 

So we run cdscan plain and see what comes out.

$ cdscan –x monthly_means.xml ./*.nc



Using templates for filenames

• Scenario 2: Filenames reflect the contents of the files 
closely with the file-naming convention:

<YYYY><MM>_<VARIABLE>.nc

• In the olden days, cdscan used to be “cdimport”
which had one excellent feature you might want to 
make use of. It allows you to add a template for file 
and directory names.

• The template allows you to specify time components, 
start and end levels as well as variable IDs.



“cdimport”: cdscan’s predecessor 

$ cdimport –h # yields information about the template:

%d day number (1 .. 31)
%eX ending timepoint/level, where X is a specifier character
%f day, two-digit, zero-filled (01, 02,…, 31)
%g month, lower case, three characters ('jan', 'feb', ...)
%G month, upper case, three characters ('JAN', 'FEB', ...)
%H hour (0 .. 23)
%h hour, two-digit, zero filled (00, 01, …, 23)
%L vertical level (integer)
%m month number, not zero filled (1 .. 12)
%M minute 0 .. 59
%n month number, two-digit, zero-filled (01, 02, ..., 12)
%S second (0 .. 59)
%v variable ID (string)
%y year, two-digit, zero-filled (integer)
%Y year (integer)
%z Zulu time (ex: '6Z19990201')
%% percent sign



Back to the example

• Scenario 2: Filenames reflect the contents of the files 
closely with the file-naming convention:

<YYYY><MM>_<VARIABLE>.nc

• Run cdscan with the –p argument and your template:
$ cdscan –x monthly_means.xml -p %Y%n_%v.nc /*.nc

• Optionally, you can do a manual edit of the XML file to 
tidy up the unused <cdms_filemap> attribute.

• This may hold millions of elements if you have a lot of 
files which makes it slow to read.



What else can cdscan do? (1)

• Let’s look at the help output from 
“cdscan –h”:

-a alias_file: change variable names to the aliases 
defined in an alias file.

-c calendar:   either "gregorian", "proleptic_gregorian", 
"julian", "noleap", or "360_day". Default:

-d dataset_id: dataset identifier. Default: "none"
-e newattr:    Add or modify attributes of a file, variable, 

or axis.



What else can cdscan do? (2)

--exclude var,var,...: exclude listed variables from 
output.

-f file_list:  file containing a list of absolute data file 
names, one per line.

-h:            print a help message.
-i time_delta: scan time as a 'linear' dimension. This is 

useful if the time dimension is very long.
--include var,var,...: only include the listed variables in 

the output.



What else can cdscan do? (3)

-j: scan time as a vector dimension. Time values are 
listed individually. Turns off the -i option.

-l levels:  list of levels, comma-separated. Only specify 
if files are partitioned by levels.

-m levelid: name of the vertical level dimension. The 
default is the name of the vertical level dimension.

-p template: Compatibility with pre-V3.0 datasets. 
'cdimport -h' describes template strings.

-q: quiet mode



What else can cdscan do? (4)

-r time_units: time units of the form "<units> since 
yyyy-mm-dd hh:mi:ss", where <units> is one of 
"year", "month", "day", "hour", "minute", "second“.

-s suffix_file: Append a suffix to variable names, 
depending on the directory the data is located in, 
deals with multiple files holding variables with the 
same name.



What else can cdscan do? (5)

-t timeid: id of the partitioned time dimension. The 
default is the name of the time dimension.

--time-linear tzero,delta,units[,calendar]: Override the 
time dimensions(s) with a linear time dimension. The 
arguments are a comma-separated list.

-x xmlfile: XML filename. By default, output is written 
to standard output.



So what does the user see?

• cdscanned files are same as any other CDAT-
compatible data file:
>>> import cdms
>>> f=cdms.open(‘cdscanned_stuff.xml’)
>>> print f.variables # Will list the 
variables

>>> var=f(‘q’, time=(“1910-10”, “1940-09”),
lat=(30,60), lon=(-20,10), level=1000)

# var now holds the contents of whatever
# actual data files needed to be aggregated
# together.

• As a user you see none of this and can get on with 
your science!



So why use cdscan?

1. Large datasets described as a grouped 
entity.

2. No need to know underlying data format.
3. No need to know file-names.
4. Datasets can be sliced in any way the user 

chooses using logical spatio-temporal 
selectors rather than loops of programming 
code.

5. You can use it to improve the metadata of 
your data files…



cdscan to up your metadata quality!

• Since cdscan exposes a common set of metadata for 
a dataset it can be used to improve your CF-
compliance!

• Use the ‘-e’ argument to add new attributes to your 
variables, axes and at the global file level:

-e temp.standard_name=“air_temperature”

-e temp.units=“K”

-e level.standard_name=“depth”

-e .source=“UK Met Office Unified Model Version 5.5”
-e .references=“Cited in paper by E.S.Fuller (2001).”
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